Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Heather L. Slater, Hanna Rozynski, Guy Crundwell and Neil M. Glagovich*

Department of Chemistry, Central Connecticut State University, New Britain, CT 06053, USA

Correspondence e-mail: glagovichn@ccsu.edu

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.048$
$w R$ factor $=0.118$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(2-Acetylphenyl)acetamide

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$, was synthesized from 2'aminoacetophenone in acetic anhydride. In the molecular structure, an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{O}=1.893(18) \AA$ A appears to affect the overall planar conformation of the molecule.

Comment

Derivatives of acetophenone have been synthesized for many reasons: as precursors of indoles (Fuerstner et al., 1991; Fuerstner \& Jumbam, 1992) and quinolines (Curran \& Kuo, 1984), in order to study their chemiluminescent properties (Pileni \& Santus, 1977, Giraud et al., 1977; Sugiyama \& Akutagawa, 1967), as potential analgesic precursors (Giuliani et al., 1983; Lembo et al., 1983), and to study intramolecular hydrogen bonding (Appleton et al., 1970; Hambly \& Bonnyman, 1958). Our special interest in acetophenone derivatives results from their use in the synthesis of unsymmetrical Tröger's base analogs (Webb \& Wilcox, 1990; Pardo et al., 2001; Jensen et al., 2002).

(I)

The title compound, (I) (Fig. 1), was synthesized as an intermediate in the total synthesis of 6-methyl-2-nitro$6 H, 12 H-5,11$-methanodibenzo $[b, f][1,5]$ diazocine, an unsymmetrical Tröger's base compound. A key step in the synthesis involved Schiff base formation between the acetyl O atom of compound (I) and the amino N atom of p-nitroaniline. The imine product did not form, although several methodologies were attempted (Weingarten et al., 1967). It is possible that the intramolecular hydrogen bond between the amide H atom and acetyl O atom somehow interferes with the condensation reaction.

The intramolecular hydrogen-bond distance between atoms O1 and H1 (on N1) of 1.893 (18) \AA is consistent with other six-
\qquad

Figure 1
A view of (I) (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond between O1 and H 1 (on N 1) is indicated as a dashed line.
membered ring intramolecular hydrogen bonds [two recent examples have been reported by Manh et al. (1999) and Ando et al. (2004)]. The molecule of (I) is essentially planar, with an r.m.s. deviation of $0.0420 \AA$ for atoms $\mathrm{O} 1 / \mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 8$, while atoms C9, C10 and O2 are displaced by 0.344 (2), 0.321 (3) and 0.645 (2) A , respectively, from this plane.

Experimental

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$, was synthesized according to a previously reported method (Leonard \& Boyd, 1946). 2'-Aminoacetophenone ($5 \mathrm{~g}, 37 \mathrm{mmol}$) was dissolved in acetic anhydride $(10 \mathrm{ml})$ and stirred at room temperature for 3 h . The resulting clear solution was poured on to crushed ice (100 ml) and allowed to stand until all of the excess acetic anhydride had been hydrolyzed. The white precipitate which formed was filtered off and recrystallized from ethanol to yield $6.3 \mathrm{~g}(96 \%)$ of N-(2-acetylphenyl)acetamide.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}$	$Z=4$
$M_{r}=177.20$	$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation 2
$a=7.765(7) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$b=8.699(7) \AA$	$T=298(2) \mathrm{K}$
$c=15.805(13) \AA$	Needle, orange
$\beta=119.35(7)^{\circ} \AA \AA^{\circ}$	$0.43 \times 0.31 \times 0.27 \mathrm{~mm}$
$V=930.6(14) \AA^{3}$	

Data collection

Oxford Diffraction Sapphire3
diffractometer
ω scans
Absorption correction: multi-scan
\quad (CrysAlis RED; Oxford
Diffraction, 2005)'
$T_{\text {min }}=0.809, T_{\text {max }}=0.975$

19878 measured reflections 1639 independent reflections 1019 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
H atoms treated by a mixture of
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.118$
$S=0.93$
1639 reflections
124 parameters
independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0807 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.18 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.888(17)$	$1.893(18)$	$2.657(2)$	$143.1(15)$

H atoms bonded to C atoms were placed in calculated postions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, or $0.96 \AA$ for methyl groups, and included in the refinement in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. The N -bound H atom was refined independently with an isotropic displacement parameter.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was funded in part by an NIH Area Grant (No. 1 R15 AI057408-01) and an NSF MRI Grant (No. 0520982), and also by CCSU-AAUP research grants and CCSU Faculty Student research grants. GC acknowledges the NSF (MRI Grant No. 0420322).

References

Ando, K., Tsuji, E., Ando, Y., Kuwata, N., Kunitomo, J., Yamashita, M., Ohta, S., Kohno, S. \& Ohishi, Y. (2004). Org. Biomol. Chem. 2, 625-635.

Appleton, J. M., Andrews, B. D., Rae, I. D. \& Reichert, B. E. (1970). Aust. J. Chem. 23, 1667-1677.
Curran, D. P. \& Kuo, S. C. (1984). J. Org. Chem. 49, 2063-2065.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fuerstner, A. \& Jumbam, D. N. (1992). Tetrahedron, 48, 5991-6010.
Fuerstner, A., Jumbam, D. N. \& Weidmann, H. (1991). Tetrahedron Lett. 32, 6695-6696.
Giraud, M., Pileni, M. P., Valla, A. \& Santus, R. (1977). J. Chim. Phys. Phys. Chim. Biol. 74, 224-228.
Giuliani, E., Lembo, S., Sasso, V., Sorrentino, L., Silipo, C. \& Vittoria, A. (1983). Farmaco Ed. Sci. 38, 847-864.

Hambly, A. N. \& Bonnyman, J. (1958). Aust. J. Chem. 11, 529-537.
Jensen, J., Tejler, J. \& Wärnmark, K. (2002). J. Org. Chem. 67, 6008-6014.
Lembo, S., Sasso, V., Silipo, C. \& Vittoria, A. (1983). Farmaco Ed. Sci. 38, 750761.

Leonard, N. J. \& Boyd, S. N. Jr (1946). J. Org. Chem. 11, 405-418.
Manh, G. T., Purseigle, F., Dubreuil, D., Predere, J. P., Guingant, A., DanionBougot, R. \& Toupet, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 28212828.

Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 1.171.27p5 beta. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

Pardo, C., Sesmilo, E., Gutiérrez-Puebla, E., Monge, A., Elguero, J. \& Fruchier, A. (2001). J. Org. Chem. 66, 1607-1611.
Pileni, M. P. \& Santus, R. (1977). J. Phys. Chem. 81, 755-760.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sugiyama, N. \& Akutagawa, M. (1967). Bull. Chem. Soc. Jpn, 40, 240-244.
Webb, T. H. \& Wilcox, C. S. (1990). J. Org. Chem. 55, 363-365.
Weingarten, H., Chupp, J. P. \& White, W. A. (1967). J. Org. Chem. 32, 32463249.

[^0]: © 2006 International Union of Crystallography All rights reserved

